Interacción 3D y Realidad Virtual en la Universidad de Málaga. Presentación del grupo 3DI-DIANA

3D Interaction and Virtual Reality at the University of Malaga. Introducing the team 3DI-DIANA

Arcadio Reyes-Lecuona
Departamento de Tecnología Electrónica
Universidad de Málaga
Málaga, SPAIN
areyes@uma.es

Luis Molina-Tanco
Departamento de Tecnología Electrónica
Universidad de Málaga
Málaga, SPAIN
lmtanco@uma.es

Maria Cuevas-Rodriguez
Departamento de Tecnología Electrónica
Universidad de Málaga
Málaga, SPAIN
mariacuevas@uma.es

Daniel González-Toledo
Departamento de Tecnología Electrónica
Universidad de Málaga
Málaga, SPAIN
dgonzalezt@uma.es

Palabras Clave
Realidad Virtual
Realidad Aumentada
Audio 3D Binaural
Acústica Virtual
Interacción 3D

Resumen
El equipo 3DI-DIANA desarrolla su labor de investigación en interacción 3D y experiencia de usuario en Entornos Virtuales Interactivos (EVI) desde 2004. Su trabajo se centra en el estudio de la interacción persona-maquina en el contexto de la interacción 3D en Realidad Virtual. Su experiencia e intereses abarcan especialización de audio 3D binaural, interacción 3D con grados de libertad reducidos y Realidad Virtual y Aumentada, incluyendo Realidad Virtual húmica y Presencia. El equipo posee una importante experiencia en proyectos colaborativos tanto nacionales como europeos y está abierto a colaboraciones con otros grupos, pudiendo aportar su experiencia en los temas que se describen. Más concretamente, el equipo 3DI-DIANA puede contribuir en la inclusión de audio 3D a entornos virtuales interactivos, y en el desarrollo de técnicas de interacción 3D que mejoran la experiencia de usuario cuando se manejan objetos tridimensionales complejos.

Keywords
Virtual Reality
Augmented Reality
Binaural 3D audio
Virtual Acoustics
3D Interaction

Abstract
The 3DI-DIANA team is researching and developing technology in 3D interaction and user experience in Interactive Virtual Environments (IVE) since 2004. Their work has focused on 3D interaction techniques for Virtual Reality from a Human-Computer Interaction perspective. Their expertise and interests span binaural 3D audio spatialisation, 3D interaction with reduced degrees of freedom, and Virtual and Augmented Reality, including haptic Virtual Reality and Presence. The team have an important record in collaborative projects, both at national and European level. They are open to collaborations with other research teams, being able to contribute with their expertise in their described topics. More specifically, the 3DI-DIANA team can contribute in extending interactive virtual environments with 3D Audio and developing 3D interaction techniques which improve the user experience of handling and visualization of complex 3D objects.

1. Introducción

DIANA (Diseño de Interfaces AvaNZAdos) es el grupo de investigación TIC171 del PAIDI (Plan Andaluz de Investigación Desarrollo e Innovación) de la Junta de Andalucía. DIANA es un grupo de investigación multidisciplinar compuesto en la actualidad por más de 30 miembros de diferentes áreas que van desde la ingeniería a las bellas artes y que lleva desde 1999 trabajando en el estudio de interfaces para su aplicación a las nuevas tecnologías de la información y las comunicaciones.

Dentro del grupo DIANA, el equipo 3DI-DIANA trabaja desde hace más de 15 años en la interacción 3D en Entornos Virtuales Interactivos (EVI). El primer proyecto del grupo DIANA relacionado con Realidad Virtual (RV) digno de consideración fue ALBATROS (Aplicaciones de un sistema de adquisición de Bioseñales y Técnicas de Realidad Virtual al...
campo de la Salud). De ese trabajo seminal surgieron diferentes equipos de trabajo en diversas áreas relacionadas con la Interacción Persona Ordenador. Uno de ellos es el equipo de interacción 3D y Realidad Virtual, 3DI-DIANA.

2. Líneas de Investigación activas

En los últimos años, a través de su participación en diversos proyectos europeos de diferentes Programas Marco (6º, 7º y H2020), el equipo 3DI-DIANA ha ido consolidando dos grandes líneas de investigación: audio 3D binaural e interacción 3D. Se presentan en esta sección como líneas de trabajo básicas, pero haciendo diversas menciones a sus potenciales aplicaciones.

2.1 Audio 3D binaural.

Binaural significa literalmente que se oye con los dos oídos. En este sentido, el audio binaural es el equivalente auditivo de la visión estereoscópica. Sin embargo, mientras que la visión estereoscópica sólo añade sobre la monoscópica ciertos indicios de profundidad, el audio binaural añade sobre el audio monoaural indicios completos de localización tridimensional de la fuente sonora, que es percibida por el oyente como localizada a una distancia, azimut y elevación determinados, como se muestra en la Figura 1.

Por otro lado, el audio binaural posee una gran capacidad de crear sensaciones inmersivas. Esto lo convierte en un elemento muy importante en Entornos Virtuales Interactivos. Pero en ellos, el usuario puede moverse y cambiar su posición relativa respecto de las fuentes sonoras. Por lo tanto, el audio que incluya estos indicios debe ser renderizado en tiempo real.

![Figura 5: El 3D Tune-In Toolkit es una librería de renderizado de audio 3D binaural y simulación de pérdida auditiva y audífonos.](image)

Gracias a la participación en el proyecto 3DTune-In, el equipo de 3DI-DIANA ha desarrollado, en colaboración con Imperial College London, la librería 3D Tune-In Toolkit, una herramienta de código abierto para renderizar audio 3D binaural en tiempo real, que puede ser integrado en aplicaciones de RV. Esta librería está disponible en un repositorio abierto11, junto a aplicaciones de demo y un plugin VST (Figura 2). La librería 3D Tune-In Toolkit procesa fuentes monaurales y anecóicas introduciendo diferencias interanuales e indicios monaurales que sitúan la fuente en una determinada posición virtual del espacio. Se simula también el entorno, introduciendo la reverberación producida por el mismo. Todos estos procesos se han implementado de forma que sean altamente configurables. Se puede encontrar una descripción de los detalles técnicos de la librería en (Cuevas-Rodríguez et al., 2019).

![Figura 6: El 3D Tune-In Toolkit es una librería de renderizado de audio 3D binaural y simulación de pérdida auditiva y audífonos.](image)

Pero el 3D Tune-In Toolkit no sólo especializa audio. También contiene un simulador de pérdida auditiva y otro de audífonos con los que el usuario puede experimentar cómo percibe una persona con diferentes problemas de audición un ambiente sonoro en un determinado entorno. Así mismo, se puede experimentar el tipo de corrección que proporciona un audífono con direccionalidad programable.

La vocación del 3D Tune-In Toolkit es convertirse en una herramienta internacional de referencia para investigación en entornos virtuales interactivos, que permita añadir audio 3D realista con la transparencia y el control en el proceso de la señal que requiere la actividad investigadora.

2.2 Interacción 3D.

La otra gran línea de trabajo del equipo 3DI-DIANA se centra en la interacción 3D en EV, con cascos de RV, pantallas estereoscópicas o utilizando dispositivos estándar, como teclado, ratón o pantallas táctiles, con técnicas de interacción limitadas a pocos grados de libertad. El trabajo del equipo 3DI-DIANA de los últimos años ha estado enfocado en este tipo de interacción, enfocándose a la manipulación de objetos 3D en aplicaciones web o dispositivos móviles.

11 Código fuente disponible bajo licencia GPLv3 en el repositorio: https://github.com/3DTune-In/3dti_AudioToolkit
Esta interacción 3D es especialmente problemática cuando lo que se visualiza son objetos complejos (entiéndase aquí complejo en el doble sentido de estar compuestos de múltiples partes y presentar una geometría intrincada). En el caso de este tipo de objetos, resulta complicado visualizar las partes internas para inspeccionarlas, ya que pueden estar ocultas por otras partes más externas.

Figura 7: El visor hom3r permite interactuar con objetos complejos usando dispositivos de interacción estándar.

En esta línea, en el proyecto Use-it-Wisely, se desarrolló hom3r (Hierarchical prOduct Model 3D viewerR)\(^\text{12}\), un visor 3D especializado en objetos complejos jerarquizados, que pueden estar compuestos de múltiples partes ensambladas y geometrías intrincadas que pueden ocultar algunas zonas o dificultar la selección de algunas partes (González-Toledo, Cuevas-Rodríguez, Garre-Del-Olmo, Molina-Tanco, & Reyes-Lecuona, 2017). Estos modelos pueden, además, contener información adicional asociada a ciertas partes del objeto o a un determinado punto en la geometría.

El visor hom3r permite seleccionar y manipular partes del objeto a diferentes niveles de su jerarquía, ya que ofrece una API web para que se pueda gestionar la jerarquía del objeto desde la aplicación web en la que está incrustado (Figura 3). También permite hacer visibles partes internas del objeto mediante vistas explotadas o haciendo semitransparentes las partes que las ocultan. Además, permite colocar etiquetas flotantes enlazadas a un punto de la geometría del objeto.

Figura 8: El visor hom3r se ha ampliado para mostrar objetos complejos en realidad aumentada.

El visor también incluye técnicas para manipular los objetos de forma adaptativa a las proporciones de los objetos, lo que constituye otra de las áreas de trabajo del equipo. Así, han desarrollado técnicas de manipulación que mejoran las clásicas técnicas de trackball (González-Toledo, Cuevas-Rodríguez, Molina-Tanco, & Reyes-Lecuona, 2018).

La arquitectura de hom3r ha permitido integrarlo dentro del proyecto PLUGGY, en el que se desarrolla una red social centrada en el patrimonio cultural. En este proyecto, hom3r se ha hecho aún más modular y flexible, incorporando nuevas funcionalidades como la posibilidad de visualizar los objetos en dispositivos móviles y en Realidad Aumentada (RA), como se muestra en la Figura 4. Todas estas mejoras darán lugar a hom3r v2.0, aunque se trata de un trabajo aún en curso.

3. Otras líneas de trabajo

Tabla 2: Proyectos en los que ha participado el grupo

<table>
<thead>
<tr>
<th>Proyecto</th>
<th>Programa</th>
<th>Años</th>
<th>Área</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTENTIO</td>
<td>Plan Nacional</td>
<td>2003-2005</td>
<td>Realidad Virtual e Interfaces Cerebro-Computador</td>
</tr>
<tr>
<td>INTUITION</td>
<td>6º PM (UE)</td>
<td>2004-2008</td>
<td>Realidad Virtual</td>
</tr>
<tr>
<td>ENVIRA</td>
<td>Plan Nacional</td>
<td>2006-2009</td>
<td>Realidad Virtual y entrenamiento</td>
</tr>
<tr>
<td>ManuVAR</td>
<td>7º PM (UE)</td>
<td>2009-2012</td>
<td>Realidad Virtual haptica</td>
</tr>
<tr>
<td>Perseo</td>
<td>Avanza2</td>
<td>2012-2016</td>
<td>Realidad Virtual y Aumentada</td>
</tr>
<tr>
<td>Use-it Wisely</td>
<td>7º PM (UE)</td>
<td>2013-2016</td>
<td>Interacción 3D</td>
</tr>
<tr>
<td>3D Tune-In</td>
<td>H2020 (UE)</td>
<td>2015-2018</td>
<td>Audio 3D</td>
</tr>
</tbody>
</table>

\(^{12}\) Disponible en https://proyectos.diana.uma.es/hom3r/
4. Planes para el futuro

El grupo 3DI-DIANA continúa trabajando en las dos líneas de trabajo que ha consolidado a lo largo de estos años, centradas en el renderizado de audio 3D y la interacción 3D. Este trabajo se apoya, por un lado, en el mantenimiento de sus dos principales herramientas públicas: el visor 3D hom3r y la librería de espacialización de audio 3DTI Toolkit. Pero los planes de trabajo futuro pasan por usar estas herramientas para la investigación en los campos científicos asociados.

Así, el grupo ha comenzado ya una investigación en percepción del habla con ruido de fondo en el que se analiza la importancia de los indicios espaciales para la mejora de la atención espacial en lo que se denomina problema del cocktail party (Picinali, Cuevas-Rodríguez, González-Toledo, & Reyes-Lecuona, 2019). Sin embargo, los planes no se limitan a este tema, sino que se extenderán con otros estudios experimentales en psicoacústica, especialmente en percepción espacial del sonido. Uno de los planes del grupo es desarrollar un laboratorio virtual de psicoacústica espacial.

En la línea de interacción 3D, el grupo tiene planes de desarrollar nuevas técnicas de interacción que han surgido de la experiencia obtenida en pasados proyectos. Estas técnicas centradas en la manipulación de objetos con un número reducido de grados de libertad, así como en la asistencia para la visualización de partes ocultas en objetos complejos, han sido desarrolladas para resolver problemas prácticos y requieren de una validación experimental a la que dedicará un esfuerzo significativo el grupo en los próximos años.

Estas dos líneas de trabajo tienden a unificarse en el desarrollo de sistemas tridimensionales interactivos sonoros. Estos sistemas incluyen las tradicionales aplicaciones de Realidad Virtual, en las que cada vez más se incorporan elementos de audio 3D, pero también las de realidad aumentada en donde aún queda mucho que recorrer en el campo del audio, especialmente si consideramos la interacción con los objetos emisores de sonido. En cualquier caso, las implicaciones del audio 3D en entornos virtuales o aumentados son un campo de interés en el que el grupo 3DI-DIANA tiene intención de continuar su trabajo.

5. Conclusión

En este artículo se han descrito las principales líneas de investigación del equipo 3DI-DIANA, que está abierto a colaboraciones con otros grupos que trabajen en Realidad Virtual y sistemas interactivos, pudiendo aportar su experiencia, tanto en la inclusión de audio 3D en entornos virtuales, como en el desarrollo de técnicas de interacción 3D.

Referencias

Poyade, M., Reyes-Lecuona, A., Frutos, E., Flores, S., Langley, A., D’Cruz, M., ... Tosolin, F. (2011). Using virtual reality for the training of the metallographic replica technique used to inspect power plants by TECNATOM S.A. In VTT Symposium (Valtion Teknillinen Tutkimuskeskus) (pp. 53–57).
